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Efficient Antagonistic k-plex Enumeration in
Signed Graphs

Lantian Xu, Rong-Hua Li, Dong Wen, Qiangqiang Dai, Guoren Wang, Lu Qin

Abstract—A signed graph is a graph where each edge receives
a sign, positive or negative. The signed graph model has been
used in many real applications, such as protein complex discovery
and social network analysis. Finding cohesive subgraphs in signed
graphs is a fundamental problem. A k-plex is a common model
for cohesive subgraphs in which every vertex is adjacent to all
but at most k vertices within the subgraph. In this paper, we
propose the model of size-constrained antagonistic k-plex in a
signed graph. The proposed model guarantees that the resulting
subgraph is a k-plex and can be divided into two sub-k-plexes,
both of which have positive inner edges and negative outer edges.
This paper aims to identify all maximal antagonistic k-plexes in
a signed graph. Through rigorous analysis, we show that the
problem is NP-Hardness. We propose a novel framework for
maximal antagonistic k-plexes utilizing set enumeration. Effi-
ciency is improved through pivot pruning and early termination
based on the color bound. Preprocessing techniques based on
degree and dichromatic graphs effectively narrow the search
space before enumeration. Extensive experiments on real-world
datasets demonstrate our algorithm’s efficiency, effectiveness, and
scalability.

Index Terms—Signed graph, k-plex, Antagonistic communities.

I. INTRODUCTION

S IGNED graphs serve as effective tools for representing
the polarity of relationships between entities, employing

positive and negative symbols to denote the associations be-
tween the respective vertices. These graphs find applications in
diverse domains, such as capturing friend-foe relationships in
social networks [1], expressing support-dissent opinions within
opinion networks [2], characterizing trust-distrust relationships
in trust networks [3], and depicting activation-inhibition dy-
namics in protein-protein interaction networks [4].

Structural balance theory is an essential and foundational
theory in the analysis of signed graphs. According to this
theory, a signed graph denoted as G is considered balanced if
it can be partitioned into two distinct subgraphs, where edges
within each subgraph are positive, and the edges connecting
vertices from different subgraphs are negative [5]. That is,
“The friend (resp. enemy) of my friend(resp. enemy) is my
friend, the friend (resp. enemy) of my enemy (resp. friend)
is my enemy”. We can find the antagonistic sub-communities
as the localized effect of social balance theory [6]. Consider
the graph G shown in Figure 1, solid (resp. dashed) lines
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Fig. 1. Balanced graph

represent positive (resp. negative) edges. G can be divide into
two parts, one part is {v0, v1, v2}, the other part is {v3, v4, v5}.
Although there are no egdes between v0 and v2, v0 and v2
have the common friend v1 and common enemies v3, v4 and
v5. According to the structural balance theory, v0 and v2 can
also be regarded as friends.

Some cohesive subgraph models in signed graphs have also
been investigated in the literature. [7] proposed the definition
of balanced clique and gave the maximal balanced clique
search algorithm. Based on this, [8] further proposed a search
algorithm for a maximum balanced clique. Due to data noise,
clique, where vertices are pairwise connected, can rarely
appear in real data [9], [10]. It may be too strict to use
clique to find cohesive subgraphs. In order to more accurately
mine cohesive subgraphs in signed graphs, a relaxed model of
cliques is expected.

The k-plex is a crucial cohesive subgraph model adopted
extensively in graph analysis. However, its relevant definitions
and algorithms for signed networks are less studied. We
introduce the maximal antagonistic k-plex model for cohesive
subgraphs in signed graphs to address this gap and draw
inspiration from structural balance theory [5]. Formally, given
a signed network G, a maximal antagonistic k-plex C is a
maximal subgraph of G such that (1) C is k-plex without
considering the symbols of edges. (2) C is antagonistic, i.e.,
C can be divided into two parts such that the edges in the
same part are positive, and the edges connecting two parts are
negative. To derive large k-plexes, we specify the minimum
size of each antagonistic part as a parameter t. This definition
incorporates both density and balance considerations. We
prove that the maximal antagonistic k-plex problem is NP-
hard. The primary objective of our paper is to develop efficient
algorithms for enumerating all maximal antagonistic k-plex
subgraphs within a given signed network.
Applications. We show several applications of maximal an-
tagonistic k-plex enumeration as follows.
- Antagonistic group detection. People often share or argue
with each other on social networks such as Facebook and
Quora. Users with agreements can be represented by positive
edges, while negative edges can represent those with disagree-
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ments. Consequently, social network data can be modeled as a
signed graph [11]–[13]. The main objective of the antagonistic
k-plex is to identify two opposing opinion groups in a social
network, where users within each group tend to agree with
one another and disagree with users from the other group.
By computing maximal antagonistic k-plex, we can efficiently
discover user groups with contrasting perspectives. These
groups are typically tightly interconnected and hold significant
influence within the network.
- Protein complex detection. To reconstruct the signaling path-
way from the PPI network, we need the signatures of the
PPIs, which represent whether the interaction has a positive
or negative effect. A signed graph can represent activation-
inhibition relationships among proteins in the PPI network
[14], [15]. Protein complexes can be defined as a group of
proteins in which there is a dense population of positively
interacting (i.e., activating) proteins, and a dense population
of negatively interacting (i.e., inhibiting) [8], [16]. Therefore,
identifying antagonistic k-plex in signed PPI networks can
serve as a valuable method for detecting protein complexes.
- Synonyms and antonymic phrases discovery. Signed graphs
provide a natural way to represent synonym and antonym rela-
tionships between words [17]. Utilizing maximal antagonistic
k-plex, we can discover synonym groups that are antonymous
with each other, such as {sonant, voiced, loud, hard} and
{surd, soft,voiceless, unvoiced}. These discovered clusters can
be further utilized in applications such as automatic question
generation [18] and semantic expansion [19].
Contributions. We make the following contributions:
- A new k-plex model for signed graphs. We formalize the
antagonistic plex model in signed networks based on the
structural balance theory. As far as we know, the paper is
the first work considering the maximal antagonistic k-plex in
signed networks. We prove the NP-Hardness of the problem.
- A new framework tailored for maximal antagonistic plex
enumeration. In conjunction with the definition of antagonistic
k-plex, we introduce antagonistic k-plex expansion conditions.
We employ set enumeration techniques to correctly discover
of all eligible maximal antagonistic k-plexes, facilitating a
comprehensive exploration of the solution space.
- Novel optimization strategies to improve the enumeration
performance. We present early termination conditions to speed
up set enumeration. Using the pivot technique, we reduce
the search branch during enumeration. Moreover, the color
bound in the signed graph allows premature termination of
unpromising searches, improving the efficiency of identifying
maximal antagonistic k-plex in signed networks.
- Preprocessing before set enumeration. In the preprocessing
phase, we employ degree pruning in the signed graph, followed
by converting it into a dichromatic graph and applying the
plex pruning rules. We demonstrate that plexes infeasible in
the dichromatic graph cannot form antagonistic k-plex in the
signed graph. Utilizing this insight, we propose a method
to remove unqualified vertices from the dichromatic graph,
thereby reducing the size of the signed graph before set
enumeration.
- Extensive performance studies on real datasets. We perform
comprehensive experiments to assess the performance of our

proposed algorithms on various real datasets. The results
demonstrate that our optimized approach achieves significantly
faster execution, nearly two orders of magnitude quicker than
the basic algorithm.
Outline. Section 2 provides preliminaries including the defi-
nition of antagonistic k-plex model and problem statement.
Section 3 introduces the basic algorithm. Section 4 shows
several optimization techniques. Section 5 reports the results
of experimental studies. Section 6 shows some related works.
Section 7 concludes our paper.

II. PRELIMINARIES

In this paper, we focus on the undirected signed graph G =
(V,E), where V is the set of vertices and E is the set of
signed edges. Each edge in E is either positive or negative.
We use E+ and E− to denote the positive and negative edges,
respectively, where E = E+∪E−. There are no multi-edges in
G. We denote the number of vertices and the number of edges
by n and m, respectively, i.e., n = |V | and m = |E| = |E+|+
|E−|. Let N+

G (v) represent the positive neighbors of v, i.e.,
N+

G (v) = {u|(v, u) ∈ E+}. Let N−
G (v) represent the negative

neighbors of v, i.e., N−
G (v) = {u|(v, u) ∈ E−}. We use d+G =

|N+
G (v)| and d−G = |N−

G (v)| to denote the positive degree
and negative degree of v, respectively. We denote NG(v) =
N+

G (v) ∪ N−
G (v) by NG(v) and dG(v) = d+G(v) + d−G(v) by

dG(v). Let N2
G(v) be the 2-hop neighbor of v, i.e., N2

G(v) =
{u|NG(u) ∩NG(v) ̸= ∅, u ̸∈ NG(v)}.

We denote v’s positive neighbors’ positive neighbors
as N++

G (v). Let w1, w2...wn be the vertices in N+
G (v),

N++
G (v) =

⋃n
1 N

+
G (wi). In the same way, we define N+−

G (v),
N−+

G (v), and N−−
G (v), which represent v’s positive neigh-

bors’ negative neighbors, v’s negative neighbors’ positive
neighbors, and v’s negative neighbors’ negative neighbors
respectively. Given two vertices u, v, if (u, v) ∈ E+, we think
they are friends and belong to the same group. If (u, v) ∈ E−,
we think they are opponents and belong to the antagonistic
groups. Further, the 2-hop neighbors of v also can be put into
two groups, i.e., the candidate group of v’s friends and the
candidate group of v’s opponents. We use N2+

G (v) to denote
v’s 2-hop neighbors which may join the same group with v,
i.e., N2+

G (v) = N++
G (v)∪N−−

G (v). We use N2−
G (v) to denote

v’s 2-hop neighbors which may join the different group with
v, i.e., N2−

G (v) = N−+
G (v)∪N+−

G (v). Note that a vertex can
be contained in both N2+

G (v) and N2−
G (v).

Definition 1 (Antagonistic Graph [7]). A signed graph G =
(V,E+, E−) is antagonistic if V can be split into two subsets
CL and CR, s.t., ∀(u, v) ∈ E+ → u, v ∈ CL or u, v ∈ CR;
and ∀(u, v) ∈ E− → u ∈ CL, v ∈ CR or u ∈ CR, v ∈ CL.

A k-plex is a subgraph in which every vertex connects to
at least s− k vertices in the subgraph where s is the number
of vertices in the subgraph [20]. It is clear that any subgraph
of a k-plex is also a k-plex.

Definition 2 (Maximal Antagonistic k-plex). Given a signed
network G = (V,E+, E−), a maximal antagonistic k-plex C
is a maximal subgraph of G that satisfies: (1) C is k-plex;
and (2) C is antagonistic.
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Fig. 2. Maximal antagonistic k-plex

To guarantee the cohesiveness of resulting k-plexes, several
existing works [21], [22] only consider k-plexes with at least
2k − 1 vertices. We also follow this setting.

Lemma 1 (Bounded Diameter [20]). Given a k-plex C with
the size of s, C is connected and the diameter of C is at most
2 if s ≥ 2k − 1.

The bounded diameter guarantees that any two vertices in
the k-plex are close and at least share a common neighbor.
We allow users to control the size of resulting k-plexes by
setting a size threshold of at least 2k−1 for CL and CR. The
research problem is formally presented as follows.
Problem statement. Given a signed network G and two
integers k and t ≥ 2k − 1, we aim to compute all maximal
connected antagonistic k-plex C in G s.t. |CL| ≥ t and
|CR| ≥ t.

For each resulting maximal antagonistic k-plex, we guar-
antee the cohesiveness of CL, CR, and the whole subgraph.
Note that the number of all vertices in each resulting subgraph
is at least 4k − 2, and the diameter is also bounded by 2.

Example 1. Figure 2 is a signed network. The solid/dashed
lines denoted positive/negative edges. If we set t = 4 and
k = 2, there is a maximal antagonistic k-plex in this graph.
This maximal antagonistic k-plex C can be divide into two
parts, CL = {v0, v1, v2, v3} and CR = {v4, v5, v6, v7}, where
vertices in CL and CR are marked with different markings.
CL is complete as any two vertices in CL have an positive
edge. It is clear that CL is a positive k-plex. In CR, only
v6 and v7 are not adjacent. So CR is still a positive k-plex.
Consider the negative edges between CL and CR, only v3
and v7 do not have a negative edge. It meets the requirement
of k-plex. Though v8 is adjacent to all the other vertices, it
has positive edges with V3 and all the vertices in CR. That
means v8 cannot be added into the maximal antagonistic k-
plex. C ∪{v8} is not qualified for an antagonistic community.
Therefore, the plex C is maximal.

Theorem 1 (Problem Hardness). The maximal antagonistic
k-plex enumeration problem is NP-Hard.

Proof. It can be proved following the NP-Hardness of maxi-
mal k-plex enumeration problem [23]. According to definition
2, all the maximal antagonistic k-plex is k-plex, if we treat
the positive and negative edges as the same. In other words,
maximal antagonistic k-plex is a kind of more complex k-

plex. We can even list all of the k-plex first and test each
of them to judge if they can be maximal antagonistic k-plex.
Although in the research problem of this paper we are given
a size constraint, finding all eligible maximal antagonistic k-
plexes cannot be solved in non-deterministic polynomial-time.
It is clear that maximal antagonistic k-plex is NP-hard.

III. A BASIC ALGORITHM

We first propose a basic algorithm based on existing tech-
niques for maximal k-plex enumeration in unsigned networks
[24]–[26] and maximal balanced clique enumeration [7] in
signed networks. Our framework maintains an antagonistic k-
plex C by two vertex sets C = {CL, CR} based on Definition
2. Let PL be the set of candidate vertices that can be added
into CL, and PR be the set of candidate vertices that can be
added into CR. In each step, we expand C by adding vertices
from PL and PR into CL and CR, respectively. When a new
vertex is added into C, we should update PL and PR. Until
no more vertices can join C, we can stop and output CL and
CR as a maximal antagonistic k-plex. Moreover, we use QL

and QR to record candidate vertices that have been processed
to avoid outputting duplicate maximal antagonistic k-plex. If
QL or QR is not empty, the corresponding antagonistic k-plex
C = CL ∪ CR is contained in an earlier result.

Our basic algorithm for maximal antagonistic k-plex enu-
meration is presented in Algorithm 1. We process vertices
v0, v1, ..., vn (Line 2) in the ascending order of min(d+G, d

−
G).

We say a vertex u ranks higher than v if u is in front of
v in the order. For each vertex vi, we enumerate all maximal
antagonistic k-plexes containing vi (Line 2–8). CL and CR are
initialized by vi and ∅, respectively (Line 3). We initialize PL

and PR with vertices ranking lower than vi in the candidate
set. We initialize QL and QR with vertices ranks higher than vi
in the candidate set. After initializing these six sets, we invoke
procedure BAPEUTIL to enumerate all maximal antagonistic
k-plexes containing vi (Line 8).
Expanding the subgraph. Given a k-plex C and a vertex v,
S ∪ {v} is also a k-plex if and only if (1) v is adjacent to
all the vertices in S which satisfies dS(v) = |S| − k; and (2)
|NG(v) ∩ S| ≥ |S| + 1 − k. We extend the conditions to the
context of signed networks.

Lemma 2. Given an antagonistic k-plex C = {CL, CR} and
a vertex v, C ′ = C ∪ {v} is also an antagonistic k-plex if v
satisfies ①③ or ②③ as follows.

① ∀u ∈ {u ∈ CL|dC(u) = |C| − k} → (u, v) ∈ E+;
∀u ∈ CL → (u, v) /∈ E−;
∀u ∈ {u ∈ CR|dC(u) = |C| − k} → (u, v) ∈ E−;
∀u ∈ CR → (u, v) /∈ E+.

② ∀u ∈ {u ∈ CR|dC(u) = |C| − k} → (u, v) ∈ E+;
∀u ∈ CR → (u, v) /∈ E−;
∀u ∈ {u ∈ CL|dC(u) = |C| − k} → (u, v) ∈ E−;
∀u ∈ CL → (u, v) /∈ E+.

③ |NG(v) ∩ C| ≥ |C|+ 1− k.
Specifically, if v satisfies ①③, C ′ = {CL ∪ {v} , CR}. If v
satisfies ②③, C ′ = {CL, CR ∪ {v}}.
Proof. According to Definition 2, the whole subgraph is a k-
plex. So, the new vertex v must satisfy ③. v must also simul-
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Algorithm 1 BAPE(G = (V,E+, E−), k, t)
Input: a signed graph G,k,t
Output: All maximal antagonistic k-plex

1: Flag ← true
2: for vi ∈ {v0, v1, ..., vn−1} do
3: CL ← {vi} , CR ← ∅
4: PL ← (N+

G (vi) ∪N2+
G (vi)) ∩ {vi+1, ..., vn−1}

5: PR ← (N−
G (vi) ∪N2−

G (vi)) ∩ {vi+1, ..., vn−1}
6: QL ← (N+

G (vi) ∪N2+
G (vi)) ∩ {v0, ..., vi−1}

7: QR ← (N−
G (vi) ∪N2−

G (vi)) ∩ {v0, ..., vi−1}
8: BAPEUTIL(CL, CR, PL, PR, QL, QR, k, t)

9: procedure BAPEUTIL(CL, CR, PL, PR, QL, QR, k, t)
10: PL ←update(PL, CL, CR, k)
11: QL ←update(QL, CL, CR, k)
12: PR ←update(PR, CL, CR, k)
13: QR ←update(QR, CL, CR, k)
14: if PL = ∅ and PR = ∅ and QL = ∅ and QR = ∅ then
15: if |CL| ≥ t and |CR| ≥ t then
16: return C = {CL, CR}
17: Flag ←!Flag
18: if Flag then
19: for v ∈ PL do
20: PL ← PL \ {v}
21: BAPEUTIL(CL ∪ {v} , CR, PL, PR, QL, QR)
22: QL ← QL ∪ {v}
23: for v ∈ PR do
24: PR ← PR \ {v}
25: BAPEUTIL(CL, CR ∪ {v} , PL, PR, QL, QR)
26: QR ← QR ∪ {v}
27: else
28: Line 23–26; Line 19–22

taneously connect all vertices u in C with dv(u) = |C|−k. At
the same time, v must be attributed to either CL or CR. Then,
the edges between v and the vertex u with dv(u) = |C| − k
must also conform to the antagonistic principle of positive
edges between vertices in the same group and negative edges
between vertices in different groups. It is also possible that
v is connected to other vertices in C with dv(u) ̸= |C| − k,
and then these edges must likewise not violate the antagonistic
principle. Therefore, at least one of ① and ② is satisfied.

Based on Lemma 2, we can locate a set of candidate vertices
that can be added to the current antagonistic k-plex. When CL

or CR expands, we need to refine the candidate set. Algorithm
2 presents the update procedure given the new CL and CR.
The input set X can be PL, PR, QL or QR. Supported by the
update (Algorithm 2) procedure, BAPEUtil performs the
maximal antagonistic k-plex enumeration based on the given
six sets. If PL, PR, QL and QR are empty (Line 14), the
current antagonistic plex C = {CL, CR} cannot be enlarged
and is a maximal antagonistic k-plex. BAPEUtil further
checks whether CL and CR satisfy the size constraint. If so, it
outputs the current antagonistic plex (Line 15–16). Otherwise,
BAPEUtil adds a vertex v from PL to CL and recursively
invokes itself for further expansion (Line 21). When v is
processed, v is removed from PL and added in QL (Line 22).
Similar processing steps are applied on vertices in PR (Line
23–26). In order to balance the size of CL and CR when
searching, we first expand CR in the next call by judging the
Flag (Line 28).

Theorem 2 (Correctness). Algorithm 1 finds all maximal
antagonistic k-plexes correctly without redundancy.
Proof. We show the correctness of Algorithm 1 from three
aspects: (1) The antagonistic k-plex output in Algorithm 1 is

Algorithm 2 update(X,CL, CR, k)

1: Xnew = ∅
2: if X is PL or QL then
3: for v in X do
4: if v meet requirement ① and ③ then
5: Xnew ← Xnew ∪ {v}
6: if X is PR or QR then
7: for v in X do
8: if v meet requirement ② and ③ then
9: Xnew ← Xnew ∪ {v}

10: Return Xnew
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Fig. 3. Running example

maximal. Assume that an antagonistic k-plex C output in Line
16 is not maximal. The candidate set updated by Algorithm
2 would not be empty simultaneously. For a vertex v can be
added into C and make C∪{v} be a larger plex, if v is behind
the current enumeration vertex u, v should be stored in PL or
PR. C cannot be output in this round. Otherwise, v should
be stored in QL or QR. It cannot satisfy the conditions in
Line 14, and C would not be output, either. (2) Algorithm
1 will output all the qualified maximal antagonistic k-plex.
In Line 2, Algorithm 1 visits each vertex vi. Based on the
recursive structure of BAPE, all the maximal antagonistic k-
plex containing vi are explored. (3) Algorithm 1 will not
output the same maximal antagonistic k-plex more than once.
If the current enumeration vertex is vi and the current plex
has been output in the previous round, the current plex must
contain a vertex vj(j < i). In the previous round, vj would
be added into QL or QL. Therefore, in the current round, QL

or QL will not be empty, and the plex will not be output.
Combining all the above three aspects, the correctness of
Algorithm 1 is proved.

Example 2. The enumeration procedure of BAPE can be
illustrated as a search tree. Figure 3 shows part of the
search tree when we conduct the BAPE (k = 2, t =
4) on G in Figure 2 through BAPE. S1, S2, . . . rep-
resent different search states during the enumeration. At
S1, we assume that we have an antagonistic k-plex C =
{CL = {v0, v1, v2} , CR = {v4, v5, v6}} at this state. First, we
add v3 from PL to CL in S2. Due to the negative edge
between v3 and v8, we should delete v8 from PR. Then, v7
is added into CR. At S3, there are no vertices in P or Q.
So C = {CL = {v0, v1, v2, v3} , CR = {v4, v5, v6, v7}} can
be output as a maximal antagonistic k-plex. In S4, we add v7
into CR first. Now, v3 is in QL. Though v8 is added into CR

in S5, the current plex does not qualify due to the size of CL

being too small. Similarly, no plex will be output in S6.
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We analyze the complexity of our basic approach and start
from the time complexity of update as follows.

Theorem 3. The Algorithm update (X,CL, CR, k) runs in
O(|C|2 + |X|(|CL|+ |CR|)) time.

Proof. Algorithm 2 can be divided into two parts. First,
according to the expansion conditions, we should find all the
vertices u in CL and CR such that dC(u) = |C| − k. This
step can be finished within running time O(|C|2). Second, for
each vertex v in X , we should test its adjacency to all vertices
in C, and we can compute |NG(v) ∩C| simultaneously. This
step can be done in O(|X|(|CL|+ |CR|)).

We consider the size of PL, QL, PR and QR which are
the inputs of BAPEUTIL. The total size of the four sets is
bounded by N2

G(vi). Let ∆ be the maximum degree of v ∈ G.
We have |N2

G(vi)| ≤ ∆2. Based on Theorem 3, update runs
in O(∆4). For every vi in G, BAPE invokes BAPEUTIL once.

Theorem 4. The worst-case time complexity of Algorithm 1
is O(n∆42∆

2

).
Proof. Consider the case where the input subgraph of the
function BAPEUTIL is an antagonistic k-plex itself. Due
to the hereditary property of k-plex, the input subgraph
of BAPEUTIL is k-plex in each iteration. Therefore, the
update process cannot remove vertices from P . In this case,
BAPEUTIL will be called |PjL|+|PjR| times in j-th iteration,
PjL and PjR are the symbol of PL and PR in j-th iteration.
Due to the property of set enumeration, the total times is
O(2|PL|+|PR|) ≤ O(2∆

2

). Combining with Theorem 3, the
running time of the update can be assumed as O(∆4). Hence,
the whole running time of Algorithm 1 in the worst case is
O(∆4

∑n
i=0 2

∆2

) ≤ O(n∆42∆
2

).

It is worth mentioning that although we do not introduce
pruning on degree in this section, degree-based VR pruning
(see Section IV-B for details) is included in our experiments
with the baseline algorithm(BAPE).

IV. OPTIMIZATION
A. Enumeration Optimization

We present several novel optimization techniques to im-
prove the efficiency of the basic approach. We improve the
key recursive procedure BAPEUTIL. The updated algorithm
is called SAPEUTIL, and the pseudocode is presented in
Algorithm 3.
Pivoting-based pruning technique. We utilize the pivot
technique to prune the unnecessary branches in the search tree
of Algorithm 1.

Lemma 3 (k-plex pivoting [22]). In an undirected unsigned
graph, let C be a k-plex, P is the candidate set, i.e.,
P = {v /∈ K|K ∪ {v} is a k-plex}, and u is a vertex in P .
Any maximal k-plex containing C contains either u, a non-
neighbor of u, or a neighbor v of u such that v and u have
a common non-neighbor in K.

As shown in lemma 3, the existing pivot method only works
for unsigned graphs. We extend it to the antagonistic k-plex
in signed graphs.

Algorithm 3 SAPEUTIL(CL, CR, PL, PR, QL, QR, k, t)

1: PL ←update(PL, CL, CR, k)
2: QL ←update(QL, CL, CR, k)
3: PR ←update(PR, CL, CR, k)
4: QR ←update(QR, CL, CR, k)
5: if PL = ∅ and PR = ∅ and QL = ∅ and QR = ∅ then
6: if |CL| ≥ t and |CR| ≥ t then
7: return C = {CL, CR}
8: if |CL|+ |PL| < t or |CR|+ |PR| < t then return
9: Partition vertices of PL, PR, PL∪PR by greedy coloring heuristic. They

colornums are cdL,cdR,cdA respectively.
10: if cdL < t or cdR < t or cdA < 2t then continue
11: Flag ←!Flag
12: if Flag then
13: choose a pivot u from PL ∪QL

14: AL =
{
c ∈ PL ∩NG (u) |CL \ (N+

G (u) ∪N+
G (c)) = ∅

}
15: BL =

{
c ∈ PL ∩NG (u) |CR \ (N−

G (u) ∪N−
G (c)) = ∅

}
16: for v ∈ PL \NG(u) ∩AL ∩BL do
17: PL ← PL \ {v}
18: if cdLv < t or cdAv < 2t then continue
19: SAPEUTIL(CL ∪ {v} , CR, PL, PR, QL, QR)
20: QL ← QL ∪ {v}
21: AR =

{
c ∈ PR ∩NG (u) |CR \ (N+

G (u) ∪N+
G (c)) = ∅

}
22: BR =

{
c ∈ PR ∩NG (u) |CL \ (N−

G (u) ∪N−
G (c)) = ∅

}
23: for v ∈ PR \NG(u) ∩AR ∩BR do
24: PR ← PR \ {v}
25: if cdRv < t or cdAv < 2t then continue
26: SAPEUTIL(CL, CR ∪ {v} , PL, PR, QL, QR)
27: QR ← QR ∪ {v}
28: else
29: choose a pivot u from PR ∪QR

30: Line 21–27; Line 14–20

Lemma 4 (Antagonistic k-plex pivoting). In a signed graph,
let C = {CL, CR} be a k-plex, candidate set be P =
{v /∈ C|C ∪ {v} is a k-plex}, and u be a vertex in P . Any
maximal k-plex containing CL contains either u, a non-
neighbor of u, or a neighbor v of u such that v and u have a
common non-neighbor in CL. Any maximal k-plex containing
CR contains either u, a non-neighbor of u, or a neighbor v
of u such that v and u have a common non-neighbor in CR.

Proof. In the signed graph, if we want to select a vertex
from the candidate set and put it into the current antagonistic
plex, the vertex we choose should be able to form two plexes
simultaneously. Specifically, if we want to move v from PL to
CL, we must meet two conditions. First, considering only the
positive side, CL ∪ {v} is a k-plex. Second, considering only
v’s negative edges and the positive edges in CR, CR ∪ {v} is
also a k-plex.

To apply Lemma 4, we choose u as a pivot. In order to
maximize the effectiveness of this cut, we adopt the philosophy
of Chen et al [7], [7], and select a vertex u with maximum
|N+(−)(u) ∩ PL| + |N−(+)(u) ∩ PR|. Then, we compute all
neighbors of u in the candidate set PL with no common non-
neighbor with u in CL. The result is denoted as AL. We also
compute all neighbors of u in PL that have no common non-
neighbor with u in CR. The result is denoted as BL. The
pivoting technique replaces Line 19 in Algorithm 1 with the
following operation:

For v ∈ PL \NG(u) ∩AL ∩BL
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Fig. 4. Color bound example

Similarly, we compute all neighbors of u in the candidate
set PR with no common non-neighbor with u in CR. The
result is denoted as AR. We also compute all neighbors of u
in PR that have no common non-neighbor with u in CL. The
result is denoted as BR. We replace Line 23 in Algorithm 1
with the following operation:

For v ∈ PR \NG(u) ∩AR ∩BR

By pivoting, we reduce the number of recursions and the
search scope. In pivoting-based pruning, we must identify if
an edge exists between a vertex in PL (or PR) and a vertex
in CL (or CR). Therefore, the pruned candidate set can be
computed in O((|PL|+ |PR|)(|CL|+ |CR|)).
Early termination. For an antagonistic k-plex C =
{CL, CR}, if all vertices in PL and PR can be moved to C, the
maximal possible size of CL and CR for the final maximal an-
tagonistic k-plex are |CL|+|PL| and |CR|+|PR|, respectively.
Therefore, we can terminate the search if |CL|+ |PL| < k or
|CR| + |PR| < k. We apply the rule in Line 8 of Algorithm
3, which can be done in constant time.
Colorbound-based pruning technique. We extend the color
bound method for k-plex search in ordinary graphs and
propose color-bound-based pruning on signed graphs.

Lemma 5 (Color-bound [27]). Given a graph G = (V,E), if
V can be partitioned into c disjoint independent sets I1...Ic,
then the upper bound of the size of maximum k-plex in G is∑c

i=1 min {|Ii|, k}, a.k.a. color-bound.

According to the size limit in the problem definition, we
guarantee three plexes satisfy the size constraint simultane-
ously in a signed graph. The three plexes are the plex in
CL ∪PL only containing positive edges, the plex in CR ∪PR

only containing positive edges and the whole plex containing
all edges. We apply the lemma 5 for three sets to prune
unnecessary search space.

Definition 3 (Colornum in Signed Graph). In an intermediate
state of the enumeration of maximal antagonistic k-plex, PL

can be partitioned into c disjoint independent sets pl1, ...plc
(only containing positive edges), PR can be partitioned into c
disjoint independent sets pr1, ...prc (only containing positive
edges), P can be can be partitioned into c disjoint indepen-
dent sets a1, ...ac (containing positive and negative edges).
Colornums in signed graph can be computed as follows, when
L = CL ∪ PL, R = CR ∪ PR and A = CL ∪ PL ∪ CR ∪ PR.

cdL ←
∑c

j=1 min (|plj |, k) + |CL|
cdR ←

∑c
j=1 min (|prj |, k) + |CR|

cdA ←
∑c

j=1 min (|aj |, k) + |CL ∪ CR|

Algorithm 4 VertexReduction(G = (V,E+, E−), k, t)

1: while ∃v ∈ V, d+G (v) < t−k or d−G (v) < t−k+1 or dG (v) < 2t−k
do

2: for u ∈ N+
G (v) do

3: d+G (u)− = 1

4: for u ∈ N−
G (v) do

5: d−G (u)− = 1

6: G← G \ v
7: Return G

Lemma 6. Colornums in signed graph are the upper bound
of the sizes of maximum k-plex of L, R and A.

Proof. According to Definition 2, there are three k-plexes
in an antagonistic k-plex. Two small k-plexes that consider
only positive edges, and a large k-plex that considers both
positive and negative edges. Then, in the signed graph, we can
compute three colornum upper bounds for the three k-plexes.
Any eligible antagonistic k-plex should satisfy all three upper
bounds simultaneously.

Example 3. Figure 4 shows the example of color bound
reduction. In a intermediate state of the enumeration, CL =
{v0}, PL = {v1, v2, v3, v4, v5, v6, v7}. According to lemma
6, the vertices in PL are divided into three independent sets
and colored with different colors, i.e., pl1 = {v1, v3, v4, v5},
pl2 = {v2, v6} and pl3 = {v7}. Suppose k = 2, then the
colornum of PL is 5.

Algorithm Implementation. We use the rule of color bound
in Algorithm 3 (Lines 9–10). After each update of the can-
didate set, we greedily color the vertices of all remaining
candidate sets. Then, we calculate colornums of PL, PR and
A based on Lemma 6. We can skip the iteration if the upper
bound of the maximum plex that these candidate sets produce
is less than our requirement.

Lemma 7 (Color-degree of One Vertex [27]). In an inter-
mediate state of the enumeration with a growing k-plex C, a
candidate set P , assume I1...Ic is a coloring of P . For u ∈ P ,
the size of k-plex S that u ∈ S and C ⊆ S is bounded by∑c

j=1,u/∈Ij
min (|Ij | ∩NG(u), k)+(k − |(C \NG(u)|)+|C|.

Similarly, if we want to add a vertex u into CL or CR, we
can test the color-degree of u first.

Theorem 5 (Color-degree in Signed Graph). In an intermedi-
ate state of the enumeration with two growing k-plex CL and
CR, two candidate sets PL and PR, assume plj is a coloring
of PL, assume prj is a coloring of PR, assume aj is a coloring
of AL. For v ∈ PL(PR), the size of k-plex S that v ∈ S and
C ⊆ S is bounded by following:
cdLv ← F

(
plj , N

+
G (v)

)
+ (k − |CL \N+

v (v)|) + |CL|
cdRv ← F

(
prj , N

+
G (v)

)
+ (k − |CR \N+

v (v)|) + |CR|
cdAv ← F (aj , NG(v)) + (k − |(CL ∪ CR) \NG(v)|) + |C|
In all the above expression, we set F (X,Y ) =∑c
j=1,u/∈X min (|X| ∩ Y, k).

Proof. Similarly to Lemma 6, we can similarly compute three
corresponding color-degrees on three k-plexes for each candi-
date vertex v. Any eligible v should satisfy the constraints on
all three of its color-degrees simultaneously.
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Example 4. In Figure 4, suppose k = 2 and try to add
v7 into CL. We can see min

(
|pl1| ∩N+

G (v7), k
)

= 1,
min

(
|pl2| ∩N+

G (v7), k
)
= 1, (k − |(CL ∪ CR) \NG(v)|) =

0, so cdLv7 = 5. If t > 5, v7 can be skipped.

We use this rule in Algorithm 3 (Lines 18 and 25). When
we finish updateing, we test if the candidate set can build a
qualified plex by Lemma 6. This step can be done in O(∆|P |).
Then, every time we try to add a vertex v int CL(CR), we
can calculate color-degree of v based on lemma 5. If the upper
bound of the maximum plex that v can build in this iteration
is less than our requirement, we can skip v. For all vertices
in P , we need to iterate over its neighbor vertices. Therefore,
the time is also O(∆|P |).

B. Preprocessing Optimization

In preprocessing optimization, we aim to remove worthless
vertices and edges not contained in any maximal antagonistic
k-plex according to the constraints.
Vertex Reduction (VR). We first consider the neighbors of
each vertex. According to the definition 2, for each vertex v in
a maximal antagonistic k-plex C, the number of v’s neighbors
is at least |C| − k. Given that |C| is at least 2t, we have
dG(v) ≥ 2t− k.
CL and CR also should be k-plex. The edges between

vertices in CL (CR) are positive, which implies the positive
degree is at least t−k, i.e., d+G(v) ≥ t−k. Further, we consider
the negative degree. The negative edge only exists between
vertices from CL and CR, respectively. Each vertex v in CL

can build a plex with CR if we only consider the negative
edges from v and the positive edge among CR. Similarly, each
vertex v in CR can build a plex with CL if we only consider
the negative edges from v and the positive edge among CL.
That means the negative degree should be at least t − k + 1,
i.e., d−G(v) ≥ t− k + 1.

Then, we use the three constraints to reduce the graph.
VertexReduction is shown as Algorithm 4. First, we
delete those vertices whose degree does not meet these require-
ments. Then, we can iterate over the neighbors of the deleted
vertex and reduce their corresponding degrees by one. By
doing so, some new vertices that do not satisfy the condition
will appear. We recursively delete the vertices that do not
satisfy the conditions until all the remaining vertices satisfy
the conditions.

In Algorithm 4, a queue is used to store vertices that should
be removed. Since each vertex is pushed in and popped from
the queue at most once, the total processing time is O(n). After
that, if a vertex is removed, we need to update the degrees for
its neighbors. The total time cost is O(m). Therefore, the time
complexity of Algorithm 4 is O(n+m).
Dichromatic Reduction (DR). VR can cut the size of the
graph, but it is not enough. We also propose a new reduction
for each specific vertex.

Lemma 8 (Pruning Rule in Unsigned Graph [28]). In the
undirected unsigned graph G = (V,E), if K is a k-plex and
|K| ≥ q (q ≥ 2k − 2), any other vertex u which satisfies any
of the following conditions is not in the K.

Algorithm 5 DichromaticOnehop(nv, k, t)
1: g is the Dichromatic-network of NG (nv)
2: for u ∈ N+

G (nv) do
3: L1 = L1 ∪ {v}
4: for u ∈ N−

G (nv) do
5: R1 = R1 ∪ {v}
6: while ∃v ∈ g, d+g (v) < t− 2k or d+g (v) + d−g (v) < 2t− 2k do
7: for u ∈ N+

g (v) do
8: d+g (u)− = 1

9: for u ∈ N−
g (v) do

10: d−g (u)− = 1

11: if v ∈ L1 then
12: L1 ← L1 \ {v}
13: else
14: R1 ← R1 \ {v}
15: update g

16: Return DichromaticTwohop(nv, L1, R1, k, t)

v1

v2

v0

v3

v4 v5

v6

v8
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v7

Fig. 5. DichromaticOnehop example

① u ∈ NG(v) and |NG(u) ∩NG(v)| < q − 2k
② u ∈ N2

G(v) and |NG(u) ∩NG(v)| < q − 2k + 2

We apply the pruning rule in the Dichromatic-network [8].
For a vertex v, the ego network consists of v and all its
neighbor vertices, as well as all the edges between these
vertices. For a vertex v, its Dichromatic-network is its Ego-
network after removing all conflicting edges. The conflicting
edges are negative edges between vertices of N+

G (u), negative
edges between vertices of N−

G (u) and positive edges between
a vertex of N+

G (u) and a vertex of N−
G (u).

We use Dichromatic-network instead of ego-network for
pruning. Those conflicting edges are impossible to add into
an antagonistic k-plex. If we use ego-network, it would be
difficult to judge whether a vertex should be added to CL

or CR. For example, if v is the two-hop neighbor of u,
∃w ∈ N+

G (v), u ∈ N+
G (w) and ∃x ∈ N+

G (v), u ∈ N−
G (x),

it is clear that w is positive neighbor of u and they should
be in the same group. x is negative neighbor of u, and they
should be in different groups. However, it is hard to say
which group v should be assigned. On the one hand, v is a
positive neighbor of w, so they should be in the same group.
u and w are in the same group, so u and v should be in
the same group. On the other hand, v is a positive neighbor
of x, so they should be in the same group. u and x are in
different groups, so u and v should be in different groups. In
the ego-network, analyzing from different directions will lead
to opposite conclusions about the relationship between u and
v. However, we can judge the vertex easily in Dichromatic-
network. This is because there are no conflicting edges and
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no misunderstandings.

Lemma 9. Finding an antagonistic k-plex in the Dichromatic-
network is a necessary but insufficient condition for finding it
on the original graph.

Proof. If we can find an antagonistic k-plex in Dichromatic-
network, it does not mean that we can find this plex in the
original graph due to conflicting edges. A conflicting edge
can make a whole plex in Dichromatic-network unqualified.
Fortunately, we find that if a vertices group cannot build a plex
in Dichromatic-network, it cannot build a plex in ego-network.
We can use this property to delete vertices on the Dichromatic-
network and map them to the original graph.

Next, we will show how to prune in the Dichromatic-
network. First, we consider the one-hop neighbor. We have
the following lemma:

Theorem 6 (Pruning Rule for One-hop). In the undirected
signed graph G = (V,E), if C is a maximal antagonistic k-
plex, for a given v ∈ C, any other vertex u which satisfies
either of the following conditions is not in the C.

① u ∈ N+
G (v) and |N+

G (u) ∩N+
G (v)| < t− 2k

② u ∈ N−
G (v) and |N+

G (u) ∩N−
G (v)| < t− 2k

③ u ∈ NG(v) and |NG(u) ∩NG(v)| < 2t− 2k

Proof. According to Lemma 8, each one-hop neighbor v of a
given u should meet the requirements of the two small positive
plexes and the whole antagonistic plex. For the small positive
plex Cs that v belongs to, the number of positive neighbors
of v in Cs is at least |Cs| − 2k. For the whole antagonistic
plex Cw that v belongs to, the number of neighbors of v in
Cw is at least |Cw| − 2k. Finally, according to Definition 2,
Cs is at least t, Cw is at least 2t.

Algorithm Implementation. Reduction on one-hop neighbors
is shown as Algorithm 5. First, we save all the positive and
negative neighbors of nv in L and R, respectively (Lines 2–5).
Then, we delete all unqualified vertices in g. However, when
a vertex is deleted, it will affect the neighbor numbers of its
neighbors. Some of its neighbors may become unqualified after
deleting some vertices. At that time, we can add these vertices
to the delete queue. Utill the delete queue is empty, we can
stop, and all the remaining vertices in L and R are qualified
one-hop neighbors.

Example 5. Figure 5 shows the example of Dichromatic-
onehop reduction. We set k = 2, t = 4 and set v0 as the
current nv in Algorithm 5. The other vertices in the graph
are divided into two groups according to their adjacency to
vertex v0. The positive neighbours of v0 are v1, v2, v3, v4, v5.
Negative neighbours are v6, v7, v8, v9. However, the |N+

G (v5)∩
N+

G (v0)| = 3 < 2t − 2k = 4. v5 do not satisfy ③ in lemma
6, so v5 is removed from L1. All the remaining vertices form
the Dichromatic-onehop neighbors of v0.

This process is similar to Algorithm 4. It can be seen as VR
in the Dichromatic-network. However, Dichromatic-network is
smaller than G. There are at most ∆ vertices and ∆2 edges in
Dichromatic-network. So the time complexity of Algorithm 5
is O(∆ +∆2), when ∆ is the maximum degree of v ∈ G.
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Fig. 6. DichromaticTwohop example
Algorithm 6 DichromaticTwohop(nv, L1, R1, k, t)

1: Ln = ∅,Rn = ∅
2: for u ∈ L1 do
3: for v ∈ N+

G (u) do
4: L2 = L2 ∪ {v}
5: for v ∈ N−

G (u) do
6: R2 = R2 ∪ {v}
7: for u ∈ R1 do
8: for v ∈ N+

G (u) do
9: R2 = R2 ∪ {v}

10: for v ∈ N−
G (u) do

11: L2 = L2 ∪ {v}
12: for v ∈ L2 \NG (nv) do
13: a = |N+

G (u) ∩ L1|
14: b = |N−

G (u) ∩R1|
15: if a ≥ t− 2 ∗ k + 2 and a+ b ≥ 2 ∗ t− 2 ∗ k + 2 then
16: Ln = Ln ∪ {v}
17: for v ∈ R2 \NG (nv) do
18: a = |N+

G (u) ∩R1|
19: b = |N−

G (u) ∩ L1|
20: if a ≥ t− 2 ∗ k + 2 and a+ b ≥ 2 ∗ t− 2 ∗ k + 2 then
21: Rn = Rn ∪ {v}
22: Return Ln = Ln ∪ L1, Rn = Rn ∪R1

Theorem 7 (Pruning Rule for Two-hop). In the undirected
signed graph G = (V,E), if C is a maximal antagonistic k-
plex, all qualified one-hop neighbors are in L1 ∪R1, w is the
neighbor of a vertex in L1 ∪R1. For all the following cases,
w is not in C, if a < t− 2k + 2 or a+ b < 2t− 2k + 2.

① v ∈ L1, w ∈ N+
G (v). let a be the number of w’s positive

neighbors in L1, b be the number of w’s negative neighbors
in R1.

② v ∈ L1, w ∈ N−
G (v). let a be the number of w’s positive

neighbors in R1, b be the number of w’s negative neighbors
in L1.

③ v ∈ R1, w ∈ N+
G (v). let a be the number of w’s positive

neighbors in R1, b be the number of w’s negative neighbors
in L1.

④v ∈ R1, w ∈ N−
G (v). let a be the number of w’s positive

neighbors in L1, b be the number of w’s negative neighbors
in R1.

Proof. First, we have identified all Dichromatic-onehop neigh-
bors. Two-hop neighbors are neighbors of one-hop neighbors.
After Algorithm 5 is completed, we have L1 as the qualified
one-hop positive neighbors and R1 as the qualified one-
hop negative neighbors. We can divide Dichromatic-twohop
neighbors into four parts according to the adjacency with the
Dichromatic-onehop neighbors. They are positive neighbors of
vertices in L1, negative neighbors of vertices in L1, positive
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Algorithm 7 SAPE(G = (V,E+, E−), k, t)
Input: a signed graph G,k,t
Output: All maximal antagonistic k-plex

1: VertexReduction(G, k, t)
2: Flag ← true
3: for vi ∈ {v0, v1, ..., vn−1} do
4: CL ← {vi} , CR ← ∅
5: Ln,Rn =DichromaticOnehop(vi, k, t)
6: PL ← Ln ∩ {vi+1, ..., vn−1}
7: PR ← Rn ∩ {vi+1, ..., vn−1}
8: QL ← Ln ∩ {v0, ..., vi−1}
9: QR ← Rn ∩ {v0, ..., vi−1}

10: SAPEUTIL(CL, CR, PL, PR, QL, QR)

neighbors of vertices in R1, and negative neighbors of vertices
in R1. According to Lemma 8, each Dichromatic-twohop
neighbor v of a given u should also meet the requirements
of two small positive plexes and the whole antagonistic plex.
For the small positive plex Cs that v belongs to, v’s positive
neighbors in Cs is at least |Cs|−2k+2. For whole antagonistic
plex Cw that v belongs to, v’s neighbors in Cw is at least
|Cw| − 2k + 2.

Algorithm Implementation. Reduction on two-hop neighbors
is shown as Algorithm 6. We use Ln and Rn to store the final
candidate sets of the given vertex nv. We put the positive
neighbors of vertices in L1 and the negative neighbors of
vertices in R1 into L2 as candidate sets for 2-hop vertices
in Ln. Similarly, we put the positive neighbors of the vertices
of R1 and the negative neighbors of the vertices of L1 into
R2 as the candidate set of 2-hop vertices in Rn (Line 2–11).
Then, we traverse L2 and R2 respectively and put the vertices
meeting the above conditions into Ln and Rn respectively
(Line 12–21). Then, we union the two-hop candidate Ln and
Rn with one-hop candidate L1 and R1, respectively (Line 22).
Finally, we get Ln and Rn as the candidate vertices sets for
the given vertex nv.

Example 6. Figure 6 shows an example of Dichromatic-
twohop reduction. We set k = 2, t = 4 and set v0 as the
current nv in Algorithm 6. L1 and R1 are the Dichromatic-
onehop neighbor sets of nv. This figure omits the lines among
v0 and Dichromatic-onehop neighbor of v0. v10 is the two-
hop neighbor of v0. It has four positive neighbors in L1 and
negative neighbors in R1, which satisfy the requirements of
Dichromatic-twohop. However, |N+

G (v11)∩L1|+ |N−
G (v11)∩

R1| = 5 < 2t−2k+2 = 6. Therefore, v11 is not Dichromatic-
twohop neighbor of v0.

In DR, we need to iterate over all the neighbors of the two-
hop neighbors of nv. So the time complexity of Algorithm 6
is O(∆3). As the DR is called for each vertex in G, the total
time complexity of DR is O(∆3n).
Algorithm Implementation Summary. We summarize the
preprocessing algorithm and show it as Algorithm 7. In the
first step, we use VR (Line 1). Then, for each vertex we use
Dichromatic Reduction to reduce the number of the vertices
in the candidate set (Line 5). After that, PL, PR, QL and QR

is computed (Line 6–9) and SAPEUTIL is called (Line 10).
It is worth noting that although a variety of optimization

methods are incorporated in Algorithm 7 compared to Algo-
rithm 1, Algorithm 7 still uses the structure of set enumeration

TABLE I
DATASETS

Dataset |V | |E+| |E−| max(d+G) max(d−G)
Slashdot 77,357 396,378 120,197 2,507 598
Epinions 131,828 717,667 123,705 3,334 1,590

Super 567,301 82,547 632,023 2,598 11,696
WiKi 1,140,149 450,467 2,337,500 17,092 124,859

and its worst time complexity does not change. However,
it can significantly reduce the number of iterations of the
set enumeration. Algorithm 7 will be more efficient than
Algorithm 1 in actual computation.

V. EXPERIMENTS

In this section, we present our experimental results. All
the experiments are performed on a machine with Intel(R)
Xeon(R) Gold 5218R CPU @ 2.10GHz and 96GB RAM
and Ubuntu system. All algorithms are implemented in C++,
using g++ complier with -O3. The time cost is measured as
the amount of wall-clock time elapsed during the program’s
execution. If an algorithm cannot finish in 12 hours, we denote
the processing time as INF. We evaluate our algorithms in
some real and synthetic signed networks.
Algorithms. We evaluate the performance of the following
methods:
- Baseline. It is the basic solution shown in Section 3.

The baseline execution is too slow and cannot be completed
within 12 hours. We use BA instead of baseline.

- BAPE. Apply VR to baseline. For simplicity, we denote it
by BA in the following figures.

- SANC. It is the algorithm with all the optimization but
color-bound pruning. We denote it by NC in the following
figures.

- SAPE. It is the algorithm with the enumeration optimization
shown in Section 4. We denote it by SA in the following
figures.
Note that the preprocessing optimization strategies VR can

also be used in BAPE. Thus, we apply them to all three
algorithms for fairness.
Datasets. We use four datasets downloaded from
http://snap.stanford.edu to evaluate our algorithms. Slashdot
and Epinions are real-world signed networks. Super and
WiKi are not signed graphs, but we use the method in [29]
to transform them into signed networks. The details of each
dataset are shown in Table I.

A. Efficiency when varying k and t

In this experiment, we evaluate the efficiency of three
algorithms when varying t and k. The results are shown in
Figure 7.

For each data set, we test five different t-values correspond-
ing to k = 2 and k = 3. As shown in Figure 7. Among all the
test cases, BAPE is the least efficient of the three algorithms.
The other two algorithms are considerably more efficient than
BAPE. For example, when t = 3 and k = 3, BAPE cannot
finish computing Slashdot in 12h, while BAPE and SANC
can complete within minutes. This is mainly because BAPE
computes too many hopeless search branches, while the other
two algorithms use our proposed enumeration optimization.
These optimizations help the algorithm estimate in advance

http://snap.stanford.edu
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Fig. 7. Running time of different algorithms varying t,k

whether the current search branch has any hope of finding
maximal antagonistic k-plex in the future. If the current search
branch is no longer possible to find the qualified maximal
antagonistic k-plex, it is worthless to continue the computation
in this time. It can be skipped without affecting the accuracy
of the final result. Comparing SAPE and SANC, the only
difference is the use of color-bound pruning. Calculating color
bound increases the overhead of the algorithm, but it can
further reduce the number of search branches and iterations
at the same time. The efficiency of these two algorithms is
relatively close, but as shown in the Figure 7, the overall
efficiency of SAPE is still improved by using color bound.
In addition, it can be seen from the figure that the efficiency
of all algorithms increases either when the value of k becomes
smaller or the value of t becomes larger. This is due to the
increased pruning ability of preprocessing optimization at this
time. Therefore, the number of vertices that can enter the set
enumeration phase is reduced significantly. This reduces the
search space of the set enumeration.

B. Evaluation of Vertex Reduction

In this experiment, we evaluate the effectiveness and ef-
ficiency of the VR strategy. Results are shown in Figure 8
and 9. In these figures, given the dataset and value of k,
the value of t corresponds to its setting in Figure 7. For
example, the corresponding t of Slashdot k = 2 are the
value in front of the abscissa axis {3, 4, 5, 6, 7}, and the
corresponding t of Slashdot k = 3 are the value behind
the abscissa axis {7, 8, 9, 10, 11}. The same is true for other
datasets. All subsequent experimental graphs also obey this
setting. Figure 8 shows the ability of VR strategy to delete
vertices. For example, more than 90 percent of vertices can
be pruned in Slashdot and Epinions. As the values of k and t
increase, more and more vertices in the process of VR can be
removed.

Figure 9 shows the running time of VR. VR can remove
millions of hopeless vertices in a very short period of time.
As the value of k decreases and the value of t increases, more
vertices need to be removed, and the running time of VR
increases slightly, but the change is minimal.
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C. Evaluation of Dichromatic Reduction

In this experiment, we evaluate the effectiveness and effi-
ciency of the DR strategies. Figure 10 shows the number of
processed vertices after using the DR strategy. After using the
DR strategy in Algorithm 7, the sizes of the four sets PL,
PR, QL and QR corresponding to each vertex are reduced.
The candidate sets of many vertices no longer satisfy the
expansion condition. Therefore, these vertices can be skipped
during set enumeration. It can be seen from Figure 10 that
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Fig. 11. Running time of DR

the DR strategy can further prune the remaining vertices after
using the VR strategy on a large scale. With the increase of k
and t, the number of vertices pruned by DR tends to decrease,
which is mainly due to the enhanced pruning ability of VR
strategy.

Figure 11 shows the time of DR. As k and t increase, the
running time of DR also decreases. After VR, the number of
vertices becomes smaller and each vertex has fewer two-hop
neighbors. It reduces the search space of DR.

D. Scalability testing

In this experiment, we test the scalability of BAPE and
SAPE on the large dataset WiKi by varying their vertices and
edges from 20% to 100%. We set t = 8 and k = 2 as default
values. Figure 12 shows the results of the basic algorithm and
our modified algorithms.

As shown in Figure 12, the running times of both algorithms
increase as graph increases, but SAPE outperforms BAPE in
all cases. e.g., when we sample 40% of the vertices, the
running times of SAPE and BAPE are 0.9 and 372 seconds,
respectively, while when 80% of the vertices are sampled,
their runtimes are 232 and 36,458 seconds, respectively. This
experiment shows that our modified algorithms have good
scalability in practice.
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Fig. 13. Case study

E. Memory Usage
In this experiment, we compare the memory usage of the

three algorithms and the size of the original dataset used. We
set t = 3, k = 2 for Slashdot, Eponions and Super. Due to the
large size of the WiKi, we set t = 8, t = 2. Figure ?? shows
the results.

The memory usage of the three algorithms is very small,
about only six times the size of the dataset. The memory usage
of the three algorithms is close. It shows that our optimizations
do not result in significant changes in memory usage.

F. Case study on Wiki-RfA
In this experiment, we conduct a case study of the real

dataset Wiki-RfA. Wiki-RfA records the mutual voting results
of Wikipedia editors running for administrator, downloaded
from https://snap.stanford.edu/. We build an undirected signed
graph with wiki-RfA. Each editor can be seen as a vertex. If
there is a voting relationship between two editors, then there
is an edge between the two editors. If there is only support
between two editors, the two editors are on a positive edge.
Otherwise, they are on a negative edge. Our goal is to find
cohesive antagonistic communities in the graph.

Figure 13 shows an example of search results for the
balanced clique model [7] and our model. The red and blue
vertices denote the two antagonistic groups in a cohesive
antagonistic community. As shown in Figure 13a, [7] can only
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find several 3-balanced cliques in this cohesive antagonistic
community, which share many vertices. In fact, all the four
3-balanced cliques should be included in a big cohesive
antagonistic community. Figure 13b shows the result of our
model. For antagonistic k-plex, we set t = 4 and k = 2.
Obviously the antagonistic k-plex gives better results. All
the balanced cliques in Figure 13a can be included in the
antagonistic k-plex shown in 13b.

This case verifies that the maximal antagonistic k-plex enu-
meration can be applied to find more generalized antagonistic
communities than balanced cliques.

VI. RELATED WORKS

Signed network. A lot of literature on signed graph analysis
has appeared in recent years. An excellent survey on signed
network analysis can be found in [30]. Among these theories,
Structural balance theory is one of the fundamental theory [31]
which is first introduced in [32] and extended to graph analysis
in [5]. Our work is also based on structural balance theory.
[6], [33]–[35] aim to find the antagonistic communities in a
signed network. The authors in [33] hope to find a group of k
subgraphs such that the edges within each subgraph are dense
and cohesive and the edges crossing different subgraphs are
dense and oppositive. These works aim to find several groups
of dense subgraphs, but they do not propose a clear structural
definition of their model.

There is also some research on searching cliques in signed
graphs. an (α, k)-clique model is proposed in [29]. They want
to find a maximal clique C in a signed graph such that
the vertices in C have no more than k negative neighbors
and no less than αk positive neighbors. However, this model
only considers the positive and negative degree of vertices
and ignores the model structure. To overcome this problem,
[7] propose the definition of maximal balanced clique and a
new enumeration algorithm for the maximal balanced clique
enumeration problem. Given a signed network G, a balanced
clique is complete and can be split into two subcliques.
The edges in the same subclique are positive, and the edges
between the different subcliques are negative. The author
in [8] extended the balanced clique definition and proposed
an algorithm for the maximum balanced clique enumeration
problem. However, the clique model is too strict to mine
real cohesive antagonistic communities on signed graphs fully.
Therefore, in this paper, we choose k-plex, the relaxed model
of clique.
k-plex model on unsigned networks. It is well-known that the
problem of enumerating all maximal k-plexes is NP-hard [10].
Most of the current algorithms for enumerating maximal clique
or relaxation models of clique are based on the core of the
algorithm in [36], [37]. Many existing algorithms for listing
maximal k-plexes, as in [38]–[40] also stem from the Bron-
Kerbosch algorithm. Noted that when k = 1, k-plex is a clique.
In addition, many small size plexes are not applicable in the
analysis of real data, so it is proposed in [9] to find extremely
large plexes of size at least q. An efficient algorithm using
clique and k-core to reduce the search space is also proposed
in [9]. Then, [22] further modified the pivot method, which is

commonly used for clique enumeration, to further optimize the
efficiency of the maximal k-plex algorithm. They also propose
size pruning rules based on the number of common neighbors
of two vertices [22]. However, the worst-case time complexity
of the previous algorithms is O(n22n). [28] proposed a new
algorithm which can lists all maximal k-plexes with provably
worst-case running time O(n2γn) where γ < 2. They design
a pivot heuristic that always branches on the vertex of the
minimum degree in the graph. The time complexity of [41]’s
method is similar, but its practical effect is better. [24] lists all
maximal k-plexes in O(n2γD) time, where γ is also smaller
than 2, and D is the degeneracy of the graph that is far less
than the vertices number n. However, these algorithms are
difficult to apply to signed graphs due to different structures.

VII. CONCLUSIONS
In this paper, we study the maximal antagonistic k-plex

problem in signed graphs. We propose a new model named
antagonistic k-plex in a signed graph. A new maximal antago-
nistic k-plex enumeration framework is devised based on this
model. Then, we design novel optimization strategies based
on pivot and color bound to improve the efficiency of the
enumeration algorithm. We also use early termination pruning
and degree-based pruning to further reduce unnecessary iter-
ative searches. We use the reduction in the dichromatic graph
to reduce the search space in the preprocessing stage. Ex-
perimental results on real datasets demonstrate the efficiency,
effectiveness, and scalability of our modified algorithms.
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